Ametherm MS35 2R035

Ametherm MS35 2R035
The MS35 2R035 inrush current limiting thermistor from Ametherm offers a maximum steady state current of 35A (up to +25°C) and a resistance of 2Ω ±25% (at 25°C). Ametherm's MegaSurge™ series of inrush current limiting thermistors are capable of handling up to 900 joules of energy and 50 amperes of steady state current. These power thermistors are rugged and built to last even in the most demanding high power applications. The Ametherm MS35 devices play a key role in alternative energy applications by avoiding current spikes in the power generated by wind turbines, solar panels, and other sources as it's fed into batteries, inverters, and other energy storage components. These MegaSurge™ devices are also used to regulate the release of battery energy in electric vehicles and in pre-charge circuits for many different types of battery chargers.
  • Inrush current limiting thermistor
  • Resistance of 2Ω ±25% (at 25°C)
  • Maximum steady state current of 35A (up to +25°C)
  • Maximum recommended energy of 750J (Actual energy failure at 1250J)
  • 0.02Ω at 100% maximum current and 0.04Ω at 50% maximum current
  • Body temperature of +235°C at maximum current
  • Material type C (for beta and curve)
  • Dissipation constant of 96mW/°C
  • Thermal time constant of 65mW/s

Typical applications for the MS35 series include:

  • Regulate the release of battery energy in electric vehicles and in pre-charge circuits for many different types of battery chargers.
  • Power generated by wind turbines, solar panels, and other sources as it's fed into batteries, inverters, and other energy storage components
The below table gives the full specifications of the Ametherm MS35 2R035 series:

Ametherm MS35 2R035 Specifications
Specifications
Additional Features
  • Inrush current limiting thermistor
  • Suitable for high energy and short term high current applications
  • Dissipation constant 96mW/°C
  • Thermal time constant 65mW/s
  • Material type C (for beta and curve)
Body Temperature
  • +235°C at maximum current
Maximum Recommended Energy
  • 750J (actual energy failure at 1250J)
Maximum Steady State Current
  • 35A (upto +25°C)
Resistance at +25°C
  • 2Ω ±25%
Resistance at Maximum Current (RImax)
  • 0.02Ω at 100% maximum current
  • 0.04Ω at 50% maximum current

We are pleased to provide you with a range of additional content including videos, product datasheets, case studies, white papers and application notes for your reference. Please see below for the latest content available:

 

 

DOCUMENTATION
PDF DocumentAmetherm MS35 2R035 MegaSurge™ inrush current limiting thermistor datasheet

 

 

 

VIDEOS
Limiting Inrush Current with NTC and PTC Themistors

Learn how to limit inrush current using NTC and PTC thermistors in this presentation by Ametherm.

Many applications today, including industrial machinery, power tools and other high current equipment, use limiting inrush current as a major design consideration to combat the problematic effects of inrush current.

Inrush current occurs when a system powers on and experiences a spike in current. This current can be substantially higher than standard operating current. If not properly managed, it can reduce the effective operating life and impose damage to equipment. For example, inrush current could disable a cooling fan, eventually leading to total system failure.

Applications that are switched on and off quickly, such as welding equipment, present a particular concern for limiting inrush current. The limiting inrush current circuit must reset instantaneously during each power on to protect the system. This further complicates the management of inrush current.

NTC stands for Negative Temperature coefficient. The NTC thermistor provides variable resistance based on temperature. As temperature increases, the resistance drops from high to low and allows current to pass through.

PTC stands for Positive Temperature Coefficient. The PTC thermistor also provides variable resistance based on temperature. As temperature rises, resistance increases from low to high and blocks inrush current.

Typically, NTC-based limiting is used for most applications. However, there are certain scenarios that require a PTC thermistor over an NTC thermistor. These include equipment with a near-zero reset time, extreme temperature conditions, and systems that experience frequent shorts.
Limiting Inrush Current for a 40VA Transformer

Inrush current often causes problems for transformers. This video will show you how to calculate the right inrush current limiter for your transformer in 7 simple steps.
DC Motor Inrush Current and What You Need to Know

What does inrush current have to do with DC motors? This video answers that question by discussing the cause of DC motor inrush current and how to prevent the inrush of current at startup from possibly damaging the DC motor with the use of Ametherm's Inrush Current Limiters. They start by explaining how a DC motor functions, its applications and key components, how inrush current factors in, how to solve the problem of inrush current, and how to select the right inrush current limiter for your application with three easy steps.
VIDEOS
Limiting Inrush Current with NTC and PTC Themistors

Learn how to limit inrush current using NTC and PTC thermistors in this presentation by Ametherm.

Many applications today, including industrial machinery, power tools and other high current equipment, use limiting inrush current as a major design consideration to combat the problematic effects of inrush current.

Inrush current occurs when a system powers on and experiences a spike in current. This current can be substantially higher than standard operating current. If not properly managed, it can reduce the effective operating life and impose damage to equipment. For example, inrush current could disable a cooling fan, eventually leading to total system failure.

Applications that are switched on and off quickly, such as welding equipment, present a particular concern for limiting inrush current. The limiting inrush current circuit must reset instantaneously during each power on to protect the system. This further complicates the management of inrush current.

NTC stands for Negative Temperature coefficient. The NTC thermistor provides variable resistance based on temperature. As temperature increases, the resistance drops from high to low and allows current to pass through.

PTC stands for Positive Temperature Coefficient. The PTC thermistor also provides variable resistance based on temperature. As temperature rises, resistance increases from low to high and blocks inrush current.

Typically, NTC-based limiting is used for most applications. However, there are certain scenarios that require a PTC thermistor over an NTC thermistor. These include equipment with a near-zero reset time, extreme temperature conditions, and systems that experience frequent shorts.
Limiting Inrush Current for a 40VA Transformer

Inrush current often causes problems for transformers. This video will show you how to calculate the right inrush current limiter for your transformer in 7 simple steps.
DC Motor Inrush Current and What You Need to Know

What does inrush current have to do with DC motors? This video answers that question by discussing the cause of DC motor inrush current and how to prevent the inrush of current at startup from possibly damaging the DC motor with the use of Ametherm's Inrush Current Limiters. They start by explaining how a DC motor functions, its applications and key components, how inrush current factors in, how to solve the problem of inrush current, and how to select the right inrush current limiter for your application with three easy steps.

RoHS Compliance

This product is available fully compliant to the RoHS EU directive 2011/65/EU.

  • Views: 112
  • Product Code: Ametherm MS35 2R035
  • SKU: Ametherm MS35 2R035
  • Availability: In Stock
0 Product(s) Sold
  • £0.00
  • Ex Tax: £0.00

Tags: MS35 2R035