

PART NUMBER

CDMR1006

COMPONENT SPECIFICATION

ISSUE 1

Component Specification For Dual Channel Optically Coupled Solid State Relay

Features	Applications			
 Released to European Standard and complies to MIL-STD 	 Space Equipment and Systems 			
 6A Continuous Current 	 Military and High Reliability Systems 			
 Buffered Input Stage 	 Medical Instruments 			
 8 Lead Surface Mount Package 	 MOS/CMOS Applications 			
 High Isolation up to 1,000Vdc 	 Logic Interfacing 			
 Optically Coupled 	 Power Supply 			
 Hermetically Sealed 				

DESCRIPTION

The CDMR1006 has two power MOSFET optocouplers packaged into an 8-Lead Surface Mount package, and is suited for applications where two independent switches are required. This popular hermetic ceramic package combined with $1,000V_{dc}$ isolation between input and output, and between two isolated relays, makes this device ideal for solid state relay applications.

The CDMR1006 is available over the full military temperature range and with quality and screening levels ranging from Commercial and Industrial, to Defence and Space. Gold plated leads are standard, but the other lead finishes per Mil-PRF-38534 are also available. Functionally, the CDMR1006 operates as dual, single-pole-single-throw (SPST) normally open relay. Each relay is actuated by a standard logic input.

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

STANDARDS

The following specifications have been complied with in the manufacturing of this product -

Aerospace Compliance Standards

AS9100D & ISO 9001:2015 – Design & Manufacture of Electronic and Optoelectronic Components (*Ref GB15/92780*)

Military Compliance Specifications

MIL-PRF-38534 – General Specification for Hybrid Microcircuits MIL-PRF-19500 – General Specification for Discrete Semiconductor Devices

Military Compliance Standards

MIL-STD-202 – Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Method Standard for Semiconductor Devices

SCREENING INFORMATION

Our products can be screened to MIL-PRF-38534, applying test methods from MIL-STD-883; MIL-PRF-19500, applying test methods of MIL-STD-750; or a combination thereof. Please contact us for more information relating to the applicable screening processes.

AMENDMENT RECORD

lssue No.	Date	Description
1	September 2022	- First Issue

For sales enquiries, or further information, please contact our sales office at -

PACKAGE STYLES AND CONFIGURATION OPTIONS

Package	8 Lead Surface Mount				
Lead Style	-				
Channels	2				
Common Channel Wiring	-				
Isocom Part Number and Options					
Commercial	CDMR1006				
Defense Screen Level	CDMR1006/L2				
Space Screen Level	CDMR1006/L2S				
Standard Gold Plate Finish	Gold Plate				
Solder Dipped	Option #20				

FUNCTIONAL DIAGRAMS

DEVICE MARKING

For sales enquiries, or further information, please contact our sales office at -

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C C.U.O.S$

Parameter	Symbol	Value	Units
Output Supply Voltage (5)	Vs	100	V
Output Current ④, ⑤	lo	6	Α
Input Buffer Voltage – (Pins 4 & 6)③	V _{IN}	±10	V
Input Buffer Current	l _{in}	±10	mA
Input Supply Voltage (Pin 5)	V _{DD}	10	V
Input Supply Current 🗇	I _{DD}	25	mA
Power Dissipation ④, ⑤	P _{DISS}	60	W
Operating Temperature Range	TJ	-55 to 125	
Storage Temperature Range	Ts	-65 to 150	°C
Lead Temperature	ΤL	300	

GENERAL CHARACTERISTICS

-55°C ≤Tc≤125°C U.O.S.

Parameter	Symbol	Group A Subgroups	Test Conditions	Min.	Тур.	Max.	Units
Input Buffer Threshold Voltage	R _{DS(ON)}		V _{DD} = 5.0V, I _O = 10.0A	5.0	-	-	V
Input Supply Current			V _{DD} = 5.0V, I _O = 10.0A	-	10	15	
	I _{DD}		V_{DD} = 5.0V, I ₀ = 10.0A ⁽²⁾	-	-	25	mA
Input-to-Output Leakage Current	I _{I-O}	1	V _{I-0} =1.0KVdc, Dwell =5.0s	-	-	-	μΑ
Output Capacitance	Coss		$V_{IN} = 0.8V$, f = 1.0MHz, $V_{S} = 25V$, T _C =25°C	-	365	-	pF
Thermal Resistance	RTHJC		V _{IN} =5.0V, V _{DD} =5.0V	-	-	1.7	°C/W
MTBF (per channel)			MIL-HDBK-217F, SF@T _c =25°C	6.0	-	-	MHrs

For sales enquiries, or further information, please contact our sales office at -

ELECTRICAL CHARACTERISTICS

55°C ≤Tc≤125°C U.O.S. Pre-Irradiation

Parameter	Symbol	Group A Subgroups	Test Conditions	Min.	Тур.	Max.	Units	
Output On-	D	1	$V_{in} = 5.0V, V_{DD} = 5.0V,$	-	0.070	0.100	Ω	
Resistance	R _{DS(ON)}	2	I ₀ = 10.0A	-	0.115	0.145	12	
Output Leakage	1	1	V _{in} = 0.1V, V _S = 100V	-	-	25		
Current	lo	2	V _{in} = 0.1V, V _S = 80V	-	-	250	μA	
Input Buffer		1	V _{IN} = 3.3V	-	-	1.0		
Current	l _{iN}	2, 3		-	-	3.0	μA	
Turn-On Delay 6	t _{on}	1, 2, 3	$V_{IN} = 5.0V, V_{DD} = 5.0V,$ $V_{S} = 30.0V, RC = 7.0\Omega/100\mu F,$ PW = 50.0ms	-	6.5	25		
Turn-Off Delay 6	t _{OFF}	1, 2, 3	$V_{IN} = 0.8V, V_{DD} = 5.0V,$ $V_{S} = 30.0V, RC = 7\Omega/100\mu F, PW$ = 50.0ms	-	26	50		
Rise Time ②, ⑥	t _r	1, 2, 3	VIN = 5.0V, VDD = 5.0V, VS = 30.0V, RC = $7.0\Omega/100\mu$ F, PW = 50.0ms	-	1.3	5.5	ms	
Fall Time ②, ⑥	t _f	1, 2, 3	VIN = 0.8V, VDD = 5.0V, VS = 30.0V, RC = 7Ω/100μF, PW = 50.0ms	-	6.0	10		

For sales enquiries, or further information, please contact our sales office at -

Post Total Dose Irradiation ® 9 ®

Electrical Characteristics per Channel @ 25°C U.O.S

Parameter	Symbol	Group A Subgroups	Test Conditions	Min.	Тур.	Max.	Units
Output On- Resistance	R _{DS(ON)}	1	$V_{in} = 5.0V, V_{DD} = 5.0V, I_{O} = 10.0A$	-	0.070	0.100	Ω
Output Leakage Current	Io	1	V _{in} = 0.8V, V _s = 100V	-	-	25	μΑ
Input Buffer Current	I _{IN}	1	V _{IN} = 5.0V	-	-	1.0	μΑ
Turn-On Delay 6	t _{on}	1	$V_{IN} = 5.0V, V_{DD} = 5.0V,$ $V_{S} = 30.0V, RC = 7.0\Omega/100\mu F,$ PW = 50.0ms	-	6.5	25	
Turn-Off Delay 6	t _{OFF}	1	$V_{IN} = 0.8V, V_{DD} = 5.0V,$ $V_{S} = 30.0V, RC = 7.0\Omega/100\mu F,$ PW = 50.0ms	-	26	50	
Rise Time ②, ⑥	t _r	1	VIN = 5.0V, VDD = 5.0V, VS = 30.0V, RC = 7.0Ω/100µF, PW = 50.0ms	-	1.3	5.5	ms
Fall Time ②, ⑥	t _f	1	VIN = 0.8V, VDD = 5.0V, VS = 30.0V, RC = $7.0\Omega/100\mu$ F, PW = 50.0ms	-	6.0	10	

Notes

- ① Specification guarenteed by design.
- ② Rise and fall times are controlled internally.
- 3 Inputs protected for V_{IN} <1.0V and V_{IN} >7.5V.
- ④ Optically coupled Solid State Relays (SSRs) have relatively slow turn on and off times. Care must be taken to insure that transient currents do not cause violation of SOA. If transient conditions are present, Isocom recommends a complete simulation to be performed by the end user to insure compliance with SOA requirements.
- (5) While the SSR design meets the design requirements in MIL-PRF 38534, the end user is responsible for product derating, as required for the application.
- 6 Reference figures 2 & 3 for switching test circuits and waveform.
- $\oslash~$ Input Supply voltage shall not exceed 5.25V @ $T_{\rm C}$
- \circledast Total Dose Irradiation with Input Bias. 10mA I_{DD} applied and V_{DS} =0 during irradiation
- Iteration with Output Bias. 80 Volts V_{DS} applied and I_{DD} =0 during irradiation
- International Rectifier does not currently have a DSCC certified Radiation Hardness Assurance Program

For sales enquiries, or further information, please contact our sales office at -

TEST DIAGRAMS

Fig 2. Switching Test Circuit (Single Channel Shown)

Fig 3. Switching Test Waveform

For sales enquiries, or further information, please contact our sales office at -

OUTLINE DRAWINGS

CDMR1006

PIN OUT INFORMATION

Pin Number	Pin Function		
1	+ Output 1		
2	- Output 1		
3	Input GND		
4	Input 1		
5	VDD		
6	Input 2		
7	- Output 2		
8	+ Output 2		

For sales enquiries, or further information, please contact our sales office at -

DISCLAIMER

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.

ISOCOM Limited 2 Fern Court Bracken Hill Business Park Peterlee County Durham SR8 2RR United Kingdom

W-www.isocom.uk.com

- E sales@isocom.uk.com
- T +44 (0) 191 416 6546

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -