

COMPONENT SPECIFICATION

ISSUE 8

Component Specification For Dual Channel Optically Coupled Solid State Relay

Features	Applications		
 10A Continuous Current 	 Space Equipment and Systems 		
 Buffered Input Stage 	 Military and High Reliability Systems 		
8 Lead Surface Mount Package	 Medical Instruments 		
 High Isolation up to 1,000V_{dc} 	 MOS/CMOS Applications 		
 Optically Coupled 	 Logic Interfacing 		
 Hermetically Sealed 	Power Supply		

DESCRIPTION

The CDMR1010 has two power MOSFET optocouplers packaged into an 8-Lead Surface Mount package and is suited for applications where two independent switches are required. This popular hermetic ceramic package combined with 1,000V_{dc} isolation between input and output, and between two isolated relays, makes this device ideal for solid state relay applications.

The CDMR1010 is available over the full military temperature range and with quality and screening levels ranging from Commercial and Industrial, to Defence and Space. Gold plated leads are standard, but the other lead finishes per Mil-PRF-38534 are also available. Functionally, the CDMR1010 operates as dual, singlepole-single-throw (SPST) normally open relay. Each relay is actuated by a standard logic input.

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

Email: sales@isocom.uk.com • Tel: +44 (0)191 416 6546

STANDARDS

The following specifications have been complied with in the manufacturing of this product -

Aerospace Compliance Standards

AS9100D & ISO 9001:2015 – Design & Manufacture of Electronic and Optoelectronic Components (Ref GB15/92780)

Military Compliance Specifications

MIL-PRF-38534 – General Specification for Hybrid Microcircuits MIL-PRF-19500 – General Specification for Discrete Semiconductor Devices

Military Compliance Standards

MIL-STD-202 – Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Method Standard for Semiconductor Devices

SCREENING INFORMATION

Our products can be screened to MIL-PRF-38534, applying test methods from MIL-STD-883; MIL-PRF-19500, applying test methods of MIL-STD-750; or a combination thereof. Please contact us for more information relating to the applicable screening processes.

Issue No.	Date	Description
1	July 2016	First Issue.
2	May 2018	Updated Formatting, Updated Absolute Maximum Ratings
3	December 2020	Updated Functional Diagrams, Updated Outline Drawings, Updated Absolute Maximum Ratings and Electrical Characteristics, Removed Screening Flow and Group Testing
4	May 2022	Added Render
5	July 2022	Updated Absolute Maximum Ratings, Updated Electrical Characteristics, Added General Characteristics and Post Total Dose Irradiation
6	September 2022	Updated Absolute Maximum Ratings
7	May 2023	Updated Format
8	August 2024	Updated Electrical Characteristics and Device Marking

AMENDMENT RECORD

For sales enquiries, or further information, please contact our sales office at -

PACKAGE STYLES AND CONFIGURATION OPTIONS

Package	8 Lead Surface Mount			
Lead Style	-			
Channels	2			
Common Channel Wiring	-			
Isocom Part Number and Options				
Commercial	CDMR1010			
Defense Screen Level	CDMR1010/L2			
Space Screen Level	CDMR1010/L2S			
Standard Gold Plate Finish	Gold Plate			
Solder Dipped	Option #20			

FUNCTIONAL DIAGRAMS

For sales enquiries, or further information, please contact our sales office at -

DEVICE MARKING

For sales enquiries, or further information, please contact our sales office at -

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C C.U.O.S$

Parameter	Symbol	Value	Units	
Output Supply Voltage	Vs	100	V	
Output Current @ 6	lo	l _o 10		
Input Buffer Voltage – (Pins 4 & 6) ③	V _{IN}	±10	V	
Input Buffer Current	I _{IN}	±10	mA	
Input Supply Voltage (Pin 5) 🗇	V _{DD}	10	V	
Input Supply Current 🗇	I _{DD}	25	mA	
Power Dissipation	P _{DISS}	60	W	
Operating Temperature Range	Tj	-55 to 125		
Storage Temperature Range	Ts	-65 to 150	°C	
Lead Temperature	Τι	300		

GENERAL CHARACTERISTICS

-55°C ≤TC≤125°C U.O.S.

Parameter	Symbol	Group A Subgroups	Test Conditions	Min.	Тур.	Max.	Units
Input Buffer Threshold Voltage 🗇 🕄	V _{IN(TH)}		V_{DD} = 5.0V, I_0 = 10.0A	2.0	-	-	v
Input Supply Current 🕁 🗇	1		$V_{DD} = 5.0V, I_0 = 10.0A$	-	10	15	
	IDD		V _{DD} = 10.0V, I _O = 10.0A	-	-	25	mA
Input-to-Output Leakage Current	I _{I-O}	1	V _{I-O} =1.0KVdc, Dwell =5.0s	-	-	1.0	μA
Output Capacitance ①	Coss		V _{IN} = 0.8V, f = 1.0MHz, V _S = 25V, T _C =25°C	-	365	-	pF
Thermal Resistance 🗇 💿	R _{θJC}		V _{IN} =5.0V, V _{DD} =5.0V	-	-	1.7	°C/W

For sales enquiries, or further information, please contact our sales office at -

ELECTRICAL CHARACTERISTICS

-55°C ≤TC≤125°C U.O.S.

Parameter	Symbol	Group A Subgroups	Test Conditions	Min	Тур	Max	Units	
Output On-	R _{DS} (ON)	1	$V_{in} = 3.3V, V_{DD} = 5.0V,$	-	0.070	0.100	Ω	
Resistance	R _{DS} (UN)	2	I ₀ = 10.0A	-	0.115	0.145	12	
Output Leakage		1	$V_{in} = 0.1V$, $V_S = 100V$	-	-	25		
Current	Io	2	$V_{in} = 0.1V, V_S = 80V$	-	-	250	μA	
land Duffer Consert	1.	1		-	-	1.0		
Input Buffer Current	I _{IN}	2, 3	V _{IN} = 3.3V	2, 3 V _{IN} = 3.3V -	V _{IN} = 3.3V	-	3.0	μA
Turn-On Delay 💿	t _{on}	1, 2, 3	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 3.3 \text{V}, \ V_{\text{DD}} = 5.0 \text{V}, \\ V_{\text{S}} = 30.0 \text{V}, \ \text{RC} = 3.0 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	6.5	25		
Turn-Off Delay ®	t _{OFF}	1, 2, 3	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 0.1 V, V_{\text{DD}} = 5.0 V, \\ V_{\text{S}} = 30.0 V, \text{RC} = 3 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	25	50		
Rise Time ②, ⑥	tr	1, 2, 3	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 3.3 \text{V}, V_{\text{DD}} = 5.0 \text{V}, \\ V_{\text{S}} = 30.0 \text{V}, \text{RC} = 3.0 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	1.3	6.0	ms	
Fall Time ②, ⑥	t _f	1, 2, 3	$\label{eq:VIN} \begin{array}{l} V_{IN} = 0.1 V, V_{DD} = 5.0 V, \\ V_S = 30.0 V, RC = 3\Omega / 100 \mu F, \\ PW = 50.0 ms \end{array}$	-	5.5	18		

Notes

- ① Specification guaranteed by design.
- ② Rise and fall times are controlled internally.
- (3) Inputs protected for $V_{IN} < 1.0V$ and $V_{IN} > 7.5V$.
- ④ Optically coupled Solid State Relays (SSRs) have relatively slow turn on and off times. Care must be taken to ensure that transient currents do not cause violation of SOA. If transient conditions are present, ISOCOM recommends a complete simulation to be performed by the end user to ensure compliance with SOA requirements.
- ⑤ While the SSR design meets the design requirements in MIL-PRF-38534, the end user is responsible for product derating, as required for the application.
- 6 Reference figures 2 & 3 for switching test circuits and waveform.
- ⑦ Input Supply voltage shall not exceed 5.25V @ T_c.

For sales enquiries, or further information, please contact our sales office at -

TEST DIAGRAMS

Fig 1. Typical Application

Fig 2. Switching Test Circuits (Single Channel Shown)

Fig 3. Switching Test Waveform

For sales enquiries, or further information, please contact our sales office at -

OUTLINE DRAWINGS

8 Lead Surface Mount

PIN OUT INFORMATION

Pin Number	Pin Function		
1	+ Output 1		
2	- Output 1		
3	Input GND		
4	Input 1		
5	VDD		
6	Input 2		
7	- Output 2		
8	+ Output 2		

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

Email: sales@isocom.uk.com • Tel: +44 (0)191 416 6546

DISCLAIMER

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy, or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.

ISOCOM Limited 2 Fern Court Bracken Hill Business Park Peterlee County Durham SR8 2RR United Kingdom

W – www.isocom.uk.com E – sales@isocom.uk.com T - +44 (0) 191 416 6546

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

Email: sales@isocom.uk.com • Tel: +44 (0)191 416 6546