

PART NUMBER

COMPONENT SPECIFICATION

Component Specification For Dual Channel Optically Coupled Solid State Relay

Features	Applications
 Released to European Standard and complies to MIL-STD 	 Space Equipment and Systems
 10A Continuous Current 	 Military and High Reliability Systems
 Buffered Input Stage 	 Logic level of 3.3V input
8 Lead Surface Mount Package	 Power Supply
 High Isolation up to 1,000V_{dc} 	 Displacement damage of 1.8E¹² n/cm²
 Optically Coupled 	
 Hermetically Sealed 	
 Radiation capability TID 200kRADS 	

DESCRIPTION

The CDMR2010 has two power MOSFET optocouplers packaged into an 8-lead surface mount hybrid package and is suited for applications where two independent switches are required. This popular hermetic ceramic package combined with 1,000V_{dc} isolation between input and output, and between two isolated relays, makes this device ideal for solid state relay applications.

The CDMR2010 is available with MIL-PRF-38534 Class K & Class H screening. Gold plated leads are standard, but the other lead finishes are also available. Functionally, the CDMR2010 operates as dual, single-pole-single-throw (SPST) normally open relay. Each relay is actuated by a standard logic input.

Absolute maximum ratings, recommended operating conditions, electrical specifications and performance characteristics are identical for all units. Any exceptions, due to packaging variations and limitations, are as noted.

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

STANDARDS

The following specifications have been complied with in the manufacturing of this product -

Aerospace Compliance Standards

AS9100D & ISO 9001:2015 – Design & Manufacture of Electronic and Optoelectronic Components (Ref GB15/92780)

Military Compliance Specifications

MIL-PRF-38534 – General Specification for Hybrid Microcircuits MIL-PRF-19500 – General Specification for Discrete Semiconductor Devices

Military Compliance Standards

MIL-STD-202 – Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Method Standard for Semiconductor Devices

SCREENING INFORMATION

Our products can be screened to MIL-PRF-38534, applying test methods from MIL-STD-883; MIL-PRF-19500, applying test methods of MIL-STD-750; or a combination thereof. Please contact us for more information relating to the applicable screening processes.

AMENDMENT RECORD

Issue No.	Date	Description		
1	October 2020	First issue		
2	December 2020	Updated the RDS(ON) electrical characteristics		
Α	April 2024	Updated Drawing from new template.		

For sales enquiries, or further information, please contact our sales office at -

PACKAGE STYLES AND CONFIGURATION OPTIONS

Package	8 Lead Surface Mount			
Lead Style	-			
Channels	2			
Common Channel Wiring	-			
Isocom Part Number and Options				
Commercial	CDMR2010			
Defense Screen Level	CDMR2010/L2			
Space Screen Level	CDMR2010/L2S			
Standard Gold Plate Finish	Gold Plate			

FUNCTIONAL DIAGRAMS

DEVICE MARKING

For sales enquiries, or further information, please contact our sales office at -

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C C.U.O.S$

Parameter	Symbol	Value	Units
Output Supply Voltage (5)	Vs	200	V
Output Current 4.5	lo	10	А
Input Buffer Voltage – (Pins 4 & 6) ③	VIN	±10	V
Input Buffer Current	lin	±10	mA
Input Supply Voltage (Pin 5)	VDD	10	V
Input Supply Current	IDD	25	mA
Power Dissipation 4.5	PDISS	75	W
Operating Temperature Range	TJ	-55 to 125	
Storage Temperature Range	Ts	-65 to 150	°C
Lead Temperature	TL	T _L 300	

GENERAL CHARACTERISTICS

 $T_A = 25^{\circ}C C.U.O.S$

Parameter	Symbol	Group A Subgroups	Test Conditions	Min.	Тур.	Max.	Units
Input Buffer Threshold Voltage 3	VIN(TH)		V _{DD} = 5.0V, I _O = 10.0A	2.0	-	-	V
Input-to-Output Leakage Current	li-o	1	V _{I-O} =1.0KVdc, Dwell =5.0s	-	-	1.0	μA
Output Capacitance	Coss		$V_{IN} = 0.8V, f =$ 1.0MHz, V _S = 25V, T _C =25°C	-	220	-	pF
Thermal Resistance ①,④	Rejc		$V_{IN}=5.0V, V_{DD}=5.0V$	-	-	1.5	°C/W
MTBF (per channel)			MIL-HDBK-217F, SF@Tc=25°C	6.0	-	-	MHrs

For sales enquiries, or further information, please contact our sales office at -

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C C.U.O.S$

Parameter	Symbol	Group A Subgroups	Test Conditions	Min	Тур	Max	Units
Output On-	R _{DS} (ON)	1	$V_{in} = 3.3V, V_{DD} = 5.0V,$	-	-	0.150	Ω
Resistance		2	I ₀ = 10.0A	-	-	0.300	32
Output Leakage	lo	1	$V_{in} = 0.1V, V_S = 200V$	-	-	25	
Current	10	2	$V_{in} = 0.1V, V_S = 150V$	-	-	250	μA
Input Supply		1 0 0	$V_{DD} = 5.0V, I_{O} = 10.0A$	-	10	15	
Current ①	lod	1, 2, 3	$V_{DD} = 10V, I_0 = 10.0A$	-	-	25	mA
		1	<u> </u>	-	-	1.0	
Input Buffer Current	out Buffer Current	2, 3	$V_{IN} = 3.3V$	-	-	3.0	μΑ
Turn-On Delay 6	ton	9, 10, 11	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 3.3 \text{V}, V_{\text{DD}} = 5.0 \text{V}, \\ V_{\text{S}} = 50.0 \text{V}, \text{RC} = 5 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	-	1.50	
Turn-Off Delay 6	toff	9, 10, 11	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 0.1 V, V_{\text{DD}} = 5.0 V, \\ V_{\text{S}} = 50.0 V, \text{RC} = 5 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	-	10.00	
Rise Time 26	tr	9, 10, 11	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 3.3 V, V_{\text{DD}} = 5.0 V, \\ V_{\text{S}} = 50.0 V, \text{RC} = 5 \Omega / 100 \mu \text{F}, \\ PW = 50.0 \text{ms} \end{array}$	-	-	1.50	ms
Fall Time 26	tr	9, 10, 11	$\label{eq:VIN} \begin{array}{l} V_{IN} = 0.1V, V_{DD} = 5.0V, \\ V_S = 50.0V, RC = 5\Omega/100 \mu F, \\ PW = 50.0ms \end{array}$	-	-	3.50	

Notes

1 Specification guaranteed by design application.

② Rise and fall times are controlled internally.

3 Inputs protected for V_{IN} <1.0V and V_{IN} >7.5V.

④ Optically coupled Solid State Relays (SSRs) have relatively slow turn on and off times. Care must be taken to ensure that transient currents do not cause violation of safe operation area. If transient conditions are present, ISOCOM recommends a complete simulation to be performed by the end user to ensure compliance with safe operation area requirements.

⑤ ISOCOM SSR are designed to meet the design requirements specified in MIL-PRF-38534, it is recommended for the end user to be responsible for product derating, as required for the application.

6 Reference figures 2 & 3 for switching test circuits and waveform.

For sales enquiries, or further information, please contact our sales office at -

TEST DIAGRAMS

Fig 1. Typical Application

Fig 2. Switching Test Circuits (Single Channel Shown)

Fig 3. Switching Test Waveform

For sales enquiries, or further information, please contact our sales office at -

OUTLINE DRAWINGS (All dimensions in mm) 8 Lead Surface Mount

PIN OUT INFORMATION

Pin Number	Pin Function		
1	+ Output 1		
2	- Output 1		
3	Input GND		
4	Input 1		
5	V _{DD}		
6	Input 2		
7	- Output 2		
8	+ Output 2		

For sales enquiries, or further information, please contact our sales office at -

DISCLAIMER

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy, or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.

ISOCOM Limited 2 Fern Court Bracken Hill Business Park Peterlee County Durham SR8 2RR United Kingdom

W – www.isocom.uk.com E – sales@isocom.uk.com T - +44 (0) 191 416 6546

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -