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Chapter 1 
Introduction 

 
The D2000 series of intelligent analog-to-computer interfaces are designed 

to solve many difficult interfacing problems that cannot be performed with 

existing standard interfaces. The D2000 series may be programmed to 

create custom transfer functions to interface to non-standard sensors or to 

scale the outputs to any engineering units desired. 
 

The D2000 series is an enhancement of the D1000 series of standard 

interfaces. The D2000 series is similar to the D1000 series in every respect 

except that the D2000 interfaces allow custom input-to-output transfer 

functions. As shipped from the factory, the D2000 modules operate in the 

same manner as their D1000 counterparts. For example, a D2111 shipped 

from the factory contains the same transfer function as a D1111 module; in 

this case they are both   100 mV inputs and communicate with RS-232. 

Before any attempt is made to program a D2000, you must first be familiar 

with the operation of a D1000 module as described in the D1000 manual. 
 

The D2000 contains built-in commands to create custom functions. All 

programming is performed through the communications port of the D2000 

module. There is never any need to open the module case. Modules may be 

re-ranged remotely as many times as desired. Transfer function data values 

are stored in nonvolatile memory to retain the scaling even if power is 

removed. 
 

Linear Scaling 

The basic concept of the D2000 series is to create interfaces which output 

data in application specific engineering units that may be instantly read and 

interpreted without any data conversion necessary by a host computer. In 

fact, the D2000 interfaces may be used with a dumb terminal to provide data 

readings in easy-to-understand engineering units. For example, a typical 

pressure sensor might provide a 1 to 5V. linear output for pressures of 0 to 

1000 psi. Using a D1131 module or an unprogrammed D2131 unit the output 

data would look like this: 
 

Pressure (psi) Sensor Output D2131 Output (mV) 

0 1V +01000.00 
500 3V +03000.00 
1000 5V +05000.00 

The standard output of the D2131 reads out in units of millivolts. Even though 

the D2131 will faithfully output the sensor voltage, the real parameter of 

interest is pressure, not voltage, and the voltage readings may be difficult to 
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interpret. To make the output data more readable, the D2131 may be 

programmed to output the data values in units of pressure: 
 

Pressure (psi) Sensor Output D2131 Output (psi) 

0 1V +00000.00 
500 3V +00500.00 
1000 5V +01000.00 

In some cases, the desired output may be more specific to a particular 

application. Assume that the same pressure sensor is used to measure the 

“fullness” of a pressure vessel, such as a cylinder of compressed air. The 

D2131 could be scaled to output in units of “percent” and in this case we will 

assume that if the cylinder reads 750 psi it is 100% full: 
 

Pressure Volts Output (%) 

0 1 +00000.00 
375 2.5 +00050.00 
750 4 +00100.00 

 

Nonlinear Functions 

 
 

Figure 1 Piece-wise Linear Approximation. 
 

As we have shown with the linear pressure sensor example, the output may 

be scaled to any units we desire. However, the real power of the D2000 

series is that they may be programmed to provide a nonlinear transfer 

function. This capability may be used to provide outputs in engineering units 

for nonlinear sensors. The D2000 uses a linear piece-wise approximation 

technique to describe nonlinear functions. Up to 24 linear segments may be 

used to approximate a function, as shown in Figure 1. Figure 2 shows some 

of the variety of curves that may be programmed into the D2000. 
 

The D2000 modules may also be programmed in the field to specific test 

inputs where the actual nonlinearity is not known. 



 

 
 

 
Figure 2 Example Curves. 

Introduction (1-3) 



Introduction (1-4) 



Chapter 2 
Theory of Operation 

The D2000 performs all scaling functions in firmware using the module’s 

internal microprocessor. All scaling and nonlinear function data is stored in 

a table contained in EEPROM nonvolatile memory. Scaling data stored in 

the memory will remain intact indefinitely even if power is removed. D2000 

modules may be re-scaled up to 10,000 times. 
 

All re-scaling operations are performed with simple commands given to the 

module through its communications port. The D2000 series command set 

encompasses all the D1000 commands plus additional commands to 

perform function programming. There is no need to open or have access to 

the module to perform re-scaling. In many cases the modules may be re- 

scaled remotely after they have been installed. Detailed descriptions of the 

D2000 programming commands are given in Chapter 5. 
 

Figure 3 is a simplified block diagram of the D2000, showing only the 

portions related to re-scaling. The P reads the raw Analog-to-Digital 

Converter (ADC) data after every conversion. The   P takes the raw ADC 

data and looks it up in a table held in EEPROM. The table contains entries 

which map the raw ADC data to user-defined output data values scaled in 

engineering units. If an exact match is not found, the data is interpolated 

between the two closest table entries. The resulting data in engineering units 

is stored in a memory buffer where it may be read by the Read Data (RD) 

or New Data (ND) Commands. 
 

Note that the re-scaling operation acts on the output of the analog-to-digital 

converter. The basic input-to-output transfer function of the ADC is fixed and 

cannot be changed. For example, a D2131 module with a 5 V  input range 

cannot be re-scaled to   10V or any other range. Analog input scaling is 

performed by selecting the D2000 model that best matches the sensor 

signal. The ADC data is then manipulated with the function table to provide 

output data in engineering units. 

 

Figure 3. D2000 Series Block Diagram 
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Programming Table 
Theory of Operation (2-2) 

Figure 4 shows a programmer’s model of the table used to program the 

input-output transfer function of the D2000. The table values are inten- 

tionally left blank so that it may be copied and used as a worksheet to 

help program the modules. 

ANALOG DATA 

INPUT  OUTPUT 
 

MIN 

MIN 

 
MAX MAX 
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Figure 4. Breakpoint Table. 

Comment [bg1]:  
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The two most important points in the table are the Minimum and Maximum 

points. These two table entries specify the minimum and maximum end- 

points of the transfer function curve. For instance, a D2121 has a range of 

1V, and the standard table values are: 

 Analog Input Data Output 

Minimum 

Maximum 
-1V 

+1V 
-01000.00 

+01000.00 

Plotted on a graph (Figure 5), these two points specify the endpoints of the 

transfer curve. In this case, the analog input variable X is in terms of voltage. 

The X values in the table specify the minimum and maximum voltages that 

may be applied to the analog input that will result in a linearized output. (The 

X voltage values are actually stored in memory in terms of ADC binary data). 

Voltage values applied to the analog input that are more negative than Xmin 

will result in an overload output of -99999.99. Similarly, voltage values 

greater than Xmax will result in +99999.99. 

 

 
 

Figure 5. Function Endpoints 
 

The corresponding Y values in the table specify the output data of the 

minimum and maximum points. In this case, a -1V input corresponds to an 

output of -01000.00mV. The Y values are always stored in the standard data 

format of sign, 5 digits, decimal point and two additional digits. 
 

The minimum and maximum points are the only table values necessary to 

specify a linear transfer function. For analog input values between Xmin and 

Xmax, the output values are determined by linearly interpolating between 

the minimum and maximum points. For instance, in the case of the D2121, 
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an analog input value of +.5V is linearly interpolated to an output value of 
+00500.00 (Figure 5). 

 

It should be apparent at this point that a D2000 module may be re-scaled by 

modifying the minimum and maximum values in the table. This may be 

accomplished by using the Minimum (MN) command and the Maximum 

(MX) command. Using the D2121 one volt module as an example, we 

may use the MN and MX commands to alter the table to look like this:   

 Analog Input Data Output 

Minimum 

Maximum 
0V 

+1V 
+00100.00 

+00800.00 

In this case the minimum point is 0V, corresponding to the output data 
+00100.00. The maximum point is +1V input and +00800.00 output. The 
graph of this equation is shown in Figure 6. 

 

By changing the minimum and maximum values in the table, an infinite 

 
 

Figure 6 
 
number of linear functions may be specified, bounded by X values of 1V 
and Y values of 99999.99. Figure 7 shows a few possibilities. 

 

The exact procedure necessary to program the maximum and minimum 

points is described in Chapter 5. 



 

Theory of Operation (2-5) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Breakpoints 

Figure 7. Examples of Linear Functions. 

From Figure 4, we can see that most of the transfer function table is reserved 

for “Breakpoints”. Breakpoints are used to modify the basic linear curve 

defined by the Minimum and Maximum points to create nonlinear functions. 
 

Nonlinear functions in the D2000 are approximated by using linear seg- 

ments which are specified by the data values held in the Breakpoint Table. 

Up to 23 breakpoints may be programmed to specify up to 24 linear 

segments. Figure 8 illustrates the action of the breakpoints. Figure 8a shows 

a basic linear transfer function described by the Minimum and Maximum 

points. Figure 8b shows the effect of one breakpoint used to modify the linear 

function. Notice that the breakpoint has created a nonlinear function 

described by two linear segments joined at the breakpoint. Figure 8c shows 

that two breakpoints may be used to specify a nonlinear curve described by 

three linear segments. Up to 23 breakpoints may be used to create complex 

nonlinear curves. 

 

 
 

a b c 

Figure 8. Breakpoint Examples 
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Breakpoints are stored in the EEPROM table in the same fashion as the 

minimum and maximum points. Each breakpoint is described by an X-Y pair 

specifying the analog input value at which the breakpoint occurs and the 

corresponding output data value. When the microprocessor reads the 

analog (X) data from the ADC, it searches the breakpoint table to find the X 

value closest to the input data. The micro then linearly interpolates between 

two breakpoints to calculate the resulting output data. 
 

Any number of breakpoints up to 23 values may be specified. The breakpoint 

table must be filled progressively starting with Breakpoint 00 to Breakpoint 

16 (hex). Unused or “erased” breakpoints are not used in the function 

calculation. 
 

Let’s use the D2121 1V module again as an illustrative example to show 

the effect of a breakpoint. Figure 9 shows the D2121 function table with 1 

breakpoint programmed: 
 

 Analog Input Data Output 
Minimum -1V -01000.00 
Maximum +1V +01000.00 
Breakpoint 00 +0.2V +00800.00 
Breakpoint 01 - - - - - - - - - - - - - 
……………   
……………   

 

Breakpoints 01 through 16 (hex) are erased and do not enter the function 

calculation. The Minimum and Maximum table entries contain the standard 

data values of  01000.00mV. The new curve is shown in Figure 9. 
 

 
 

Figure 9 
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Notice how the breakpoint has affected the whole curve, creating a nonlinear 

function. Here are a few samples of the input-output values that may be 

obtained from this curve: 

Analog Input Data Output 

-.8V -00700.00 

-.6V -00400.00 

-.4V -00100.00 

-.2V +00200.00 

0V +00500.00 

+.2V +00800.00 

+.4V +00850.00 

+.6V +00900.00 

+.8V +00950.00 
 

The procedure to create a breakpoint table is detailed in Chapter 4. 



 
 
 
 

D2000 COMMAND SET 

Chapter 3 
Command Set 

 

The D2000 module series incorporates the same command set as the 

D1000 series, with new commands added to facilitate custom range 

programming. The added D2000 commands are used only for program-

ming. For normal operational commands, refer to the D1000 manual. 
 

CAUTION: THE D2000 PROGRAMMING COMMANDS MUST BE USED 
WITH CARE. EACH OF THE COMMANDS IS CAPABLE OF DESTROY- 
ING FACTORY CALIBRATION. 

 

All of the commands added to the D2000 series are write-protected to guard 

against accidentally altering data values stored in the module’s EEPROM. 

Therefore, all programming commands must be preceded with a Write 

Enable (WE) command. 

All of the D1000 command-response protocol rules apply to the D2000. 

This section is intended only to describe the new commands. For program- 

ming information refer to Chapter 5. 

 
BREAK POINT (BP) 
Nonlinear functions may be approximated in the D2000 by describing the 

function curve with a series of line segments (see Figure 1). The line 

segments are programmed into the D2000 using the BreakPoint (BP) 

command. A breakpoint specifies the intersection between two linear 

segments used to approximate the nonlinear transfer function. Up to 23 

breakpoints may be used to specify 24 linear segments in a curve. 
 

To program a breakpoint, a known analog stimulus must be applied to the 

sensor input of the D2000 module. This specifies the input variable (X-axis) 

location of the breakpoint. The corresponding output data (Y-axis) of the 

breakpoint is specified as an argument to the BreakPoint (BP) command. 
 

Example: (Spaces have been added to the command for clarity) 
 

Command: $1 BP 03 +00100.00 

Response: * 
 

Command: #1 BP 03 +00100.00 

Response: *1BP 03 +00100.00FA (FA = checksum) 
 

The first two characters following the “BP” command specify the breakpoint 

number. Up to 23 breakpoints may be programmed into the D2000. In the 

sample command above, breakpoint number “03” is being specified. Break- 

point numbers are expressed in two-digit hexadecimal notation, ranging 

from “00” to “16” for a total of 23 (decimal) points. During a normal
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programming operation, breakpoints are entered in sequence in progres- 

sively-increasing X values starting from the minimum value (see Minimum 

(MN) command). Breakpoint programming must start with Breakpoint “00”. 

It is not necessary to specify all the breakpoints; any number up to 23 may 

be used. However, a breakpoint sequence must start at “00” and be entered 

sequentially. Any remaining breakpoints may be left unspecified. 

  

Following the breakpoint number, the output (Y-axis) data must be speci- 

fied. The data must be in standard D1000 format: sign, five digits, decimal 

point, 2 digits. The output data specifies the module’s output response for 

the test stimulus applied to the module input. 
 

Before setting the breakpoints with the BreakPoint (BP) Command, the 

overall function span must be specified by the MiNimum (MN) and MaXi- 

mum (MX) commands. (See Chapter 5 for programming instructions.) 

 
Erase Breakpoints (EB) 
The EB command erases all previously entered breakpoints from the 

module’s EEPROM. Erased data cannot be recovered. Therefore, before 

using the EB command, be prepared to re-program all of the breakpoints in 

the unit. The S1000 Utility Software can be used to save factory calibration 

data values. The EB command is used to provide a clean slate before 

entering a new breakpoint sequence. Previous end-point data entered by 

the MiNimum (MN) and MaXimum (MX) commands are not affected. 
 

Command: 
Response: 

$1EB 

* 
 

Command: 
Response: 

#1EB 

*1EBE2 
 

(E2 is the checksum) 
 

MiNimum (MN) 
The MiNimum (MN) command is used to define an endpoint of a transfer 

function programmed into a D2000 module. The minimum endpoint defines 

the most negative value allowed on the analog input before an overload will 

occur. 
 

In effect, the minimum value is the starting breakpoint in a programmed 

transfer function. To use the MiNimum (MN) command, a known analog test 

stimulus must be applied to the analog input of the module. The test stimulus 

must correspond to the most negative value of the desired analog input 

range. The analog input stimulus specifies the starting input value (X-axis) 

of the transfer function. The test input must lie within the factory-specified full 



 
scale input range of the module. 
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The argument of the MN command specifies the starting output value (Y- 

axis) of the transfer function. 
 

Command: 
Response: 

$1MN -00100.00 

* 
 

Command: 
Response: 

#1MN -00100.00 

*1MN-00100.00A2 
 

(A2 is the checksum) 
 

MaXimum (MX) 
The MaXimum (MX) command specifies the most positive analog input 

allowed before an overload indication will occur. The MaXimum command 

also defines the positive end point of a transfer function programmed into the 

SCM9B-2000. To perform a MaXimum command, a known analog stimulus 

must be applied to the sensor input of the SCM9B-2000 unit. This test input 

must correspond to most positive value of the programmed transfer func- 

tion. The analog test signal must remain within the factory-specified input 

range of the SCM9B-2000 module. The analog input establishes the 

maximum input value (X-axis) for the transfer function. The maximum output 

value (Y-axis) is specified as the argument of the MaXimum command. 
 

Command: 
Response: 

$1MX   +00500.00 

* 
 

Command: 
Response: 

#1MX   +0500.00 

*1MX+00500.00AE 
 

(AE is the checksum) 
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Chapter 4 
Programming 

 

This section will cover the mechanics of programming a custom transfer 

function into the D2000. All programming is performed through the commu- 

nications port of the D2000 using a dumb terminal or a computer operating 

as a dumb terminal. In field installations where AC power is not readily 

available, programming may be accomplished with standard battery-oper- 

ated ASCII terminals. Since all programming is accomplished through the 

communications port, access to the module is not necessary and ranging 

may be accomplished remotely. 

 
Programming Software 

Although all programming functions may be accomplished with a dumb 

terminal, the task may be greatly simplified with the use of utility software 

running on a computer. S1000 utility software is provided free of charge and 

will run on many of the popular personal computers. The software provides 

many enhancements that are not available through manual programming. 

In many applications the D2000 modules may be programmed strictly 

through software methods without the need for external excitation sources. 

GENERAL GUIDELINES 

Input Scaling 

The full scale analog input characteristics of a D2000 module may not be 
altered by the user. Input scaling is accomplished by selecting the correct 
D2000 model for the application. Programming a D2000 involves altering 
the scaling of the unit’s A/D converter output. There is no provision for 
changing the gain or offset of the analog circuitry. 

 
Excitation 

When the D2000 modules are programmed manually with a terminal, 

external excitation sources are necessary to establish calibration points 

within the module. Excitation may be provided by standard voltage, current 

and frequency calibration sources. The final absolute accuracy of the 

module is directly dependent on the accuracy of the excitation sources. In 

some cases, the excitation may be generated directly by the system being 

monitored. In situations when excitation sources are not available or 

impractical, modules may be programmed with S2000 programming soft- 

ware without excitation. 



 

 
Output Data Format 

Programming (4-2) 

One of the preliminary decisions to be made before programming is how the 
output data will be structured. All D1000/2000 sensor modules communi- 
cate data in a fixed format of sign, five digits, decimal point, and two 
additional digits; +00100.00 is an  example. The fixed format is used to 
simplify software in host computers. Despite the fixed format, the program- 
mer has a certain amount of flexibility to structure the output data for the best 
compromise between resolution and readability. For example, an output 
indication of +.05 volts could be structured in three different output formats: 

 

+00000.05 (+.05 volts) 
+00050.00 (+50 millivolts) 
+50000.00 (50,000 microvolts) 

 

The first consideration must be the resolution or the number of output counts 
available in the output structure. If the overall function span is 0 to +50 
millivolts, the first example would only yield 5 counts from +00000.00 to 
+00000.05. In most applications this resolution would not be acceptable. 
The next obvious output structure is to output the data in units of millivolts, 
as shown in the second example. This format would give us 5,000 counts 
of resolution. Finally, the third example expresses the output data in units of 
microvolts to give a possible resolution of five million counts. 

 

The second factor that must be considered is the performance limitations of 

the A/D converter. The best resolution of the ADC is 32,768 counts. 
Resolution is degraded by round-off errors, noise, etc., so that a practical 
expectation for usable resolution would be in the range of 5,000 to 20,000 
counts. Output resolution may be limited by picking a suitable output format 

or by using the appropriate ‘displayed digits’ setup as described in the 
D1000 Setup section. 

 

In the present example of the 0  to 50mV output, probably the best 
compromise is to use the millivolt form to represent the data. This gives 

5,000 count resolution in easy to interpret units of millivolts. In this case the 
‘displayed digits’ setup should be programmed to display all digits. 

 

It may be tempting to use the microvolt output format in an effort to extract 
the maximum counts of resolution, but the units digit will tend to be noisy. 
The uncertainty of the units digit may be counteracted somewhat by using 
large amounts of digital filtering in the module setup. In this case the setup 
data should specify a ‘displayed digits’ setting of the first five digits only, 
since the digits to the right of the decimal point have no meaning. Also, the 
microvolt format is a bit more awkward to interpret than the millivolt format. 
  

In some cases it may require a bit of creative thinking to develop a suitable 
output format. For example, a D2000 module may be required to output data 
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in units of specific gravity. In a typical application, the specific gravity output 
may range between .5 and 2. The most obvious output format would have 
the output data ranging from +00000.50 to +00002.00. This format gives 

only 150 counts of resolution between the minimum and maximum outputs. 
However, since the specific gravity of water is defined to be 1, the output may 
be scaled in units of “percent of water”. The specific gravity of water would 
then be 100 percent. The output data in ‘percent’ units would range from 
+00050.00 to +00200.00. This format allows up to 15,000 counts of 
resolution and reads out in units that may be easily interpreted. 

 
Linearity 
The analog-to-digital converter used in the D2000 has a typical integral 
nonlinearity of .1% of full scale. At the factory the ADC linearity is corrected 

by using breakpoints to reduce the nonlinearity to .01%. If the breakpoint 
table is erased with the Erase Breakpoints (EB) command, the linearity 
correction is lost. In some cases when linear re-scaling is performed, the 
programmer may take advantage of the factory linearity correction (Ex- 

ample L-4). If less than the full analog input scale is used, the linearity 
correction should be erased with the EB command. Linearity   may be 
improved with the use of new breakpoints (Example N-5). 

 

SCM9B-2000 Function Programming 
The D2000 transfer function may be programmed by modifying the function 
table with the MiNimum (MN), MaXimum (MX) and BreakPoint (BP) com- 
mands. All three commands operate on the same basic principle. Each 
command is used to specify an input-output (X,Y) data pair in the function 
table. To perform a programming command, a known analog excitation 

must be applied to the analog input of the D2000 module. The excitation may 
be a voltage, current, frequency, or the output of a resistive bridge, 
depending on the specific D2000 module type. The known excitation value 
is used to create the “X” values in the function table. The “Y” table values are 

loaded with data specified in the command argument. 
 

For example, suppose we have a D2121 1V module and we’d like to 
program the minimum table value to Xmin = -.5V, Ymin = -00100.00. Apply 
-.5 volts to the module input with a calibrated voltage source. Perform the 

MiNimum (MN) command with the Ymin value as the data argument in the 
MN command: 

 

Command: 
Response: 

$1WE 
* 

(MN is write-protected) 

Command: 
Response: 

$1MN-00100.00 

* 
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When the module executes the MN command, the microprocessor performs 
two functions. First, it reads the data produced by the A/D converter with the 
-.5V input. The A/D converter data is stored as Xmin in the function table. 

The micro then reads the argument of the MN instruction, which in this case 
is -00100.00, and stores this value in the table as Ymin. This completes the 
definition of the new minimum point. The module will immediately use this 
new minimum point data in calculating output data. 

 

Note that the MN command will write over any previous data in the table. The 
old data is permanently lost. This is also true with the MaXimum (MX) and 
BreakPoint (BP) commands. Since the MN, MX, and BP commands affect 
the calibration of the module, they must not be used indiscriminately unless 
you are prepared to re-calibrate the unit. 

 

Linear Scaling 
Rescaling the D2000 to a linear transfer function is the easiest and most 
common way to reprogram the module. The linear scale function is defined 
by specifying the two endpoints of the linear function (see Figure 7). Any 

linear function within the analog input range of the module may be defined. 
 

Custom scaling requires a calibrated analog input signal to define the end 
points of the linear transfer function. The signal could be a voltage, current, 
or frequency depending on the specific model type. The MiNimum and 
MaXimum commands are used to program the end point data into the 
modules’s memory. 

 

Programming procedures: 
 

1. Make sure the module has not been previously programmed with Break 

Point (BP) Commands. If it has, clear the breakpoints with the Erase 
Breakpoints (EB) command. 

 

2. Clear any data in the output offset register with the Clear Zero (CZ) 
command. 

 

3. Determine the endpoints which will be used to define the linear function. 
The analog input values must lie within the full scale operating range of the 
module. The analog inputs used to determine the endpoints will also define 

the display overload outputs of the module. Construct an output data format 
that is best suited for your application. 

 

4. Apply a calibrated analog signal to the module input corresponding to the 

most negative input of the desired linear scale. Perform a Minimum (MN) 
command to store the function endpoint into the modules’s memory. 

 

5. Apply a calibrated analog signal to the module input corresponding to the 
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most positive analog input value. Perform a Maximum (MX) command to 
load the endpoint data into the module memory. 

 

6. Verify that the transfer function has been correctly loaded into the module 
by applying test inputs to the module and reading out the data with the Read 
Data (RD) command. 

 

Example L-1 
Reprogram a D2251, 4-20mA module to output data in terms of percent; that 
is, 4mA will read out to be 0% and 20mA will read out as 100%. 

 

1. If the module had been previously programmed with breakpoints, erase 
the function table with the Erase Breakpoints (EB) command: 

 

Command: $1WE 
Response: * 

 

Command: $1EB 
Response: * 

 

2. Clear any offset data with the Clear Zero command: 
 

Command: $1WE 
Response: * 

 

Command: $1CZ 
Response: * 

 

3. The minimum analog input in this case is 4mA. Any current less than 4mA 
will result in a negative over-range (-99999.99). The maximum positive input 
is 20mA.  Since the minimum value of 4mA corresponds to 0%, the 

appropriate output data would be +00000.00. The output data correspond- 
ing to 20mA is +00100.00. This data format gives us whole units of “percent” 
to the left of the decimal point. To get the maximum resolution from the 
module, set up the number of displayed digits with the SetUp (SU) so that 
all digits are displayed. 

 

Command: 
Response: 

$1WE 
* 

 

Command: 
Response: 

$1SU310701C2 
* 

(typical) 



Programming (4-6) 

4. Apply exactly 4mA to the current input of the module. Program the 
endpoint with the MiNimum command: 

 

Command: $1WE 
Response: * 

 

Command: $1MN+00000.00 
Response: * 

 

5. Apply exactly 20mA to the module input and store the maximum endpoint 

with the MaXimum (MX) command: 
 

Command: $1WE 
Response: * 

 

Command: $1MX+00100.00 
Response: * 

 

6. Verify the module response by testing it with various inputs within its 
range: 

 

Input Current Output Data 
 

8mA +00025.00 
12mA +00050.00 
16mA +00075.00 

 

Rescaling is now complete. 
 

Example L-2 

A paddle-wheel flow sensor will be used to monitor the flow of water in a pipe. 
The characteristics of the sensor and the size of the pipe results in an output 
frequency of 10 Hz per gallon per minute. The operating range is from 1 to 
20 gallons per minute. 

We would like to scale a D2000 module to output data in units of .1 gallons. 

The logical module choice in this application is the D2601 frequency input 

module. The frequency output of the flow sensor will range from 10 Hz to 200 

Hz, easily within the 5 Hz to 20 kHz range of the D2601. 
 

1. Erase Breakpoints: 
 

Command: $1WE 
Response: * 

 

Command: $1EB 
Response: * 

 

2. Clear Zero: 



 

 
Command: $1WE 
Response: * 

 

Command: $1CZ 
Response: * 

Programming (4-7) 

 

3. The minimum endpoint in this case is 10 Hz corresponding to an output 
of +00001.00 gpm. The maximum frequency at 20 gpm is 200 Hz. The 
maximum output data is +00020.00. To get .1 gpm resolution, set up the 
module to display six digits: 

 

Command: 
Response: 

$1WE 
* 

 

Command: 
Response: 

$1SU31070182 
* 

(typical) 

4. Using a calibrated frequency generator, apply 10 Hz to the module input. 
Set the minimum point: 

 

Command: $1WE 
Response: * 

 

Command: $1MN+00001.00 
Response: * 

 

5. Set the frequency generator to 200 Hz to program the maximum point: 
 

Command: $1WE 
Response: * 

 

Command: $1MX+00020.00 
Response: * 

 

6. Use the frequency generator to verify a few points in the scale: 

Analog Input Data Output 

30 Hz +00003.00 
100 Hz +00010.00 
155 Hz +00015.50 

 

Programming is now complete and the D2601 can be attached to the flow 
sensor. 



 

 
Example L-3 

Programming (4-8) 

In many cases the analog calibration values may be produced directly by the 
sensors to be used in a system. The module may be re-ranged in the field 
to encompass any errors due to sensor inaccuracies. 

 

In this example, we wish to use a pressure sensor to measure the volume 
of water in a cylindrical tank that is 10 feet tall with the capacity of 1500 
gallons. The pressure sensor is mounted at the bottom of the tank so that 
it will produce an output corresponding to the height of water in the tank. The 
pressure sensor chosen produces 1V @ 0 psi and 5V @ 10 psi. A full tank 
with 10 feet of water will produce 4.335 psi (1 ft. = .4335 psi), well within 
the range of the pressure sensor. A D2131 5V input module will be used as 
the interface. 

 

1. Erase Breakpoints: 
 

Command: $1WE 
Response: * 

 

Command: $1EB 
Response: * 

 

2. Clear Zero: 
 

Command: $1WE 
Response: * 

 

Command: $1CZ 
Response: * 

 

3. To produce the analog Xmin and Xmax endpoint values, we will use the 

actual water levels in the tank to produce a calibration pressure. The 
accuracy of the pressure transducer is not important, as long as it is stable 
and linear. To set the minimum value, we will empty the tank and set the 
minimum value to +00000.00. The maximum value will be programmed with 
the tank full and the maximum output data will be set to +01500.00 gallons. 
In this case an output resolution in units of gallons is acceptable and we can 
set up the module so that 5 digits are displayed. The digits to the right of the 
decimal point will always read out “00”. 

 

Command: 
Response: 

$1WE 
* 

 

Command: 
Response: 

$1SU31070142 
* 

(typical) 



 

 
4. With the tank empty, program the minimum point: 

 

Command: $1WE 
Response: * 

 

Command: $1MN+00000.00 
Response: * 

 

5. Fill the tank with water and program the maximum point: 
 

Command: $1WE 
Response: * 

 

Command: $1MX+01500.00 

Response: * 

Programming (4-9) 

 

6. Verify the scaling. In this case, it is difficult to verify the scaling quickly and 
accurately. A “ballpark” check can be made by letting water out of the full 

tank and checking to see if the module output readings are “reasonable”. A 
more accurate check can be made by filling the tank with known amounts 
of water and verifying the output readings. 

 

Example L- 4 
A D2251 4-20mA module will be used to provide a computer interface 
to an existing process 4-20mA signal. The loop transmitter produces a 
linear 4-20mA signal corresponding to a sensor temperature of 0-200 
degrees C. In this case we’d like to take advantage of the factory linearity 
correction in the D2251 for greater accuracy. To do this, we must use the 
same analog input minimum and maximum points as programmed at the 
factory. The D2251 minimum and maximum points are 0mA and 25mA. 
The 4-20mA span of the process transmitter must be extrapolated to 0-
25mA to provide the correct data when using the MN and MX commands. 
The transfer relationship of the 4-20mA transmitter can be described by 
the equation: 

 

T  =   12.5   X   mA - 50 
 

Plug values of 0mA and 25mA into the equation to derive extrapolated 
values of T: 

 

T  = 12.5   X   (0)   - 50   = - 50 
 

T  = 12.5   X   (25)   - 50 = + 262.5 
 

These values will be used in the MN and MX instructions. 

Program the module: 

1. In this case it is assumed that the SCM9B-2251 is fresh from the factory 
and it still contains linearity correction in the breakpoint table. In order to take 
advantage of the linearity correction, the breakpoints will not be erased. 



 

 
2. Clear zero: 

 

Command: $1WE 
Response: * 

 

Command: $1CZ 
Response: * 

Programming (4-10) 

 

3. The minimum endpoint has been extrapolated to be -00050.00 @ 0mA. 
The maximum point is +00262.50 @ 25mA. We’ll setup the module to 

display temperature with .1 degree resolution: 
 

Command: 
Response: 

$1WE 
* 

 

Command: 
Response: 

$1SU31070142 
* 

(typical) 

4. Apply 0mA (open circuit) to the current input and program the minimum 
point: 

 

Command: $1WE 
Response: * 

 

Command: $1MN-00050.00 
Response: * 

 

5. Apply exactly 25mA to the current input to program the maximum point: 
 

Command: $1WE 
Response: * 

 

Command: $1MX+00262.50 
Response: * 

 

6. Apply test currents to the module to verify the scaling: 

Apply 4mA to the input: 

Command: $1 
Response: *+00000.00 

 

Apply 20mA to the input: 
 

Command: $1 

Response: *+00200.00 



Chapter 5 
Nonlinear Programming 

Nonlinear functions may be created by first specifying a linear function with 

the MiNimum (MN) and MaXimum (MX) commands. The linear function is 

then modified by using the BreakPoint (BP) command. Almost any practical 

nonlinear function may be approximated provided it satisfies two rules: 
 

1) The nonlinear function must be totally enclosed by the rectangular area 

defined by the minimum and maximum points. Figure 10 gives examples 

of the “rectangular area”. 
 

 
 

Figure 10. Example of "Rectangular Area". 
 

Figure 11 illustrates a function that is not possible since a portion of the curve 

lies outside of the rectangle. In most cases this limitation may be overcome 

by simply re-arranging the curve so that the rectangular area is larger. Figure 

12 shows the same curve as Figure 11, but slightly modified to allow it to be 

programmed into the D2000. 

 
 

Figure 11. Illegal Function. 

 
 

Figure 12 Modified Function. 



Nonlinear Programming (5-2) 

2) The nonlinear function must be a single-valued function of X. That is, for 
each input value, there can exist only one output value. Figure 13 shows two 

illegal functions. This limitation is seldom encountered in natural phenome- 
non. 

 

 
 

Figure 13. Examples of Illegal Functions. 

Programming Steps 
1) Define the function data points to be programmed 
2) Erase breakpoints 
3) Clear zero 

4) Use SetUp (SU) command to set number of displayed digits 
5) Program the minimum endpoint 
6) Program the maximum endpoint 

7) Program breakpoints 
8) Verify the function 

 

Step 1. Define the function data points to be programmed. The ability of the 
D2000 to simulate a nonlinear transfer function is highly dependent on the 
location of the breakpoints selected by the programmer. The ultimate 

conformity to the desired function is directly dependent on the linear- 
segment approximation loaded into the module. The D2000 gives the 
programmer a great deal of flexibility in how the breakpoints are placed. In 
areas where the function curves sharply, or where greater accuracy is 
desired, breakpoints may be placed close together for better conformity to 

the desired function. The chart in Figure 4 is a handy form to help organize 
the breakpoint data. 
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Step 2. The existing breakpoint table should be cleared by using the Erase 
Breakpoints (EB) command. This command will completely erase the 

breakpoint table. Any previous breakpoint information will be permanently 
lost. 

 

Command: $1WE 
Response: * 

 

Command: $1EB 
Response: * 

 

Step 3. Clear any data stored in the output offset register by using the Clear 

Zero (CZ) command: 
 

Command: $1WE 
Response: * 

 

Command: $1CZ 
Response: * 

 

Step 4. Use the SetUp (SU) command to program the correct number of 

displayed digits: 
 

Command: 
Response: 

$1WE 
* 

 

Command: 
Response: 

$1SU31070182 
* 

(typical) 

Step 5. Start the function programming by setting the minimum point using 
the MiNimum (MN) command as described in the linear scaling section. 

 

Step 6. Set the maximum function point with the MaXimum command as 
described in the linear scaling section. 

 

Step 7. Use the BreakPoint (BP) command to program the nonlinear 
function into memory. Apply the proper excitation to the module for Break- 
point 00. Use the BreakPoint command to enter the data into memory: 

 

Command: $1WE 
Response: * 

 

Command: $1BP00+00100.00 
Response: * 
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It may be useful to verify that the breakpoint data has indeed been recorded 
in memory. Without changing the excitation, read the output data: 

 

Command: $1 
Response: *+00100.00 

 

The output data should match the data programmed with the Breakpoint 
command. 

 

Once Breakpoint 00 has been entered, proceed to Breakpoint 01. Set the 
analog excitation for the correct value for Breakpoint 01. Load the breakpoint 
into memory using the BreakPoint command. Be sure to specify ‘01’ in the 

BreakPoint command: 
 

Command: $1WE 
Response: * 

 

Command: $1BP01+00200.00 

Response: * 
 

Verify that the data has been entered properly: 
 

Command: $1 
Response: +00200.00 

 

Continue this process until all breakpoints have been programmed. 
 

Step 8. Test the input-output transfer function of the module to verify that the 
breakpoint data has been entered properly. Large errors in the output data 

are generally caused by improper breakpoint programming. In most cases 
it is not necessary to repeat the whole breakpoint sequence if the error is 
confined to one portion of the curve. Breakpoints may be re-programmed 

individually to correct any errors. However, it is not possible to insert new 
breakpoints in between existing points of the table to correct for a poor initial 

function approximation. 
 

Example N–1 

A voltage-output pressure sensor produces 0V @ 100 psi and 5V @ 600 psi. 
Its output characteristic is nonlinear and may be described by the equation: 

 

P = 100 + 80 V + 4 V2
 

 

where 
 

V = sensor output in volts 
P = pressure in psi 

 
A simple linear equation may be derived by using the endpoint data: 

P = 100 + 100V 
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Unfortunately, describing the sensor output with this equation results in a 25 
psi error at V = 2.5V. 

 

To obtain better accuracy, we may approximate the quadratic transfer 
function using breakpoints. Since the sensor output range is 0–5V, the 
D2131 with an input range of ± 5V is most suitable for this application. 
For simplicity, we will use only four evenly-spaced breakpoints to plot the 
function. This will result in a function approximation with a maximum error 

of 1 psi. For better conformity, more breakpoints may be used. 
 

1. First, construct the function table: 
 

 
 
Minimum 

Analog Input 
 

0V 

Output 
 

+00100.00 
Maximum 5V +00600.00 
Breakpoint 00 1V +00184.00 
Breakpoint 01 2V +00276.00 
Breakpoint 02 3V +00376.00 
Breakpoint 03 4V +00484.00 

Notice that we’ve broken up the curve into five evenly-spaced voltage 

segments by using four breakpoints. The breakpoint output values were 
obtained by plugging the breakpoint voltage values into the quadratic 
equation that describes the sensor. 

 

2. Prepare the D2131 by erasing any stored breakpoints: (All programming 

commands must be preceded by a Write Enable (WE) command. In the 
interest of simplicity, the Write Enable commands are not shown in this or 
any of the following examples.) 

 

Command: $1EB 
Response: * 

 

3) Clear any data in the output offset register: 
 

Command: $1CZ 
Response: * 

 

4) We will setup the output data to display psi with .1 resolution: 

Command: $1SU31070182 (typical) 
Response: *  

(The SU data may vary depending on your particular module setup. See the 
Setup section in the D1000 manual.) 



Nonlinear Programming (5-6) 

5. Apply 0 volts (short) to the input of the D2131 to enter the minimum point 
of 100 psi: 

 

Command: $1MN+00100.00 
Response: * 

 

6. To set the maximum point, apply 5V to the input and program the 
maximum point to be 600 psi: 

 

Command: $1MX+00600.00 
Response: * 

 

7. Program the first breakpoint: 
 

Apply 1 volt to the input and perform the BreakPoint command: 
 

Command: $1BP00+00184.00 
Response: * 

 

Verify the breakpoint data: 
 

Command: $1 
Response: *+00184.00 

 

Repeat the procedure for the remaining breakpoints: 

Apply 2 volts to the input: 

Command: $1BP01+00276.00 
Response: * 

 

Command: $1 

Response: *+00276.00 
 

Apply 3 volts to the input: 
 

Command: $1BP02+00376.00 
Response: * 

 

Command: $1 

Response: *+00376.00 
 

Apply 4 volts to the input: 
 

Command: $1BP03+00484.00 
Response: * 

 

Command: $1 
Response:  *+00484.00 

 

The function programming is now complete. 
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8. The transfer function may be verified by applying test inputs to the module 
and obtaining output data. The data can then be compared to the original 

quadratic equation to check for conformity error. 
 

Example: 
 

Apply .5 volts to the D2131 input and read data: 
 

Command: $1 
Response:  *+00142.00 

 

To check, plug .5 volts into the quadratic equation: 

P = 100  +  80 (.5) + 4 (.5)2         =  141 

The conformity error at this point is +1 psi. 
 

Example N–2 

A pressure sensor rated for 0-200 psi has a nonlinear transfer function 
described by the relationship: 

 

V = 4 x 10-3       P + 5 x 10-6    P2
 

V = 0 to 1 volts 
P = 0 to 200 psi 

 

Use a D2121 1V input module to linearize the sensor output and convert 
the data to engineering units. 

 

This example differs from Example N–1 because the desired output data in 
psi is the independent variable in the equation. One solution to this problem 
would be to convert the equation to a form of P = f (V) and then proceed as 
we did in Example N–1. However, this kind of mathematical rigor is not 
necessary. To program the D2121, we simply need to construct a table of 

X, Y pairs. In this case, we may choose breakpoints to be in even 
intervals of psi, and then calculate the matching values of V. Our table 
with four breakpoints would look like this: 

 

 
 
Minimum 

Input 
 

0V 

Output 
 

+00000.00 
Maximum +1V +00200.00 
Breakpoint 00 .168V +00040.00 
Breakpoint 01 .352V +00080.00 
Breakpoint 02 .552V +00120.00 
Breakpoint 03 .768V +00160.00 

Notice that in this case, the breakpoints were selected by picking even 
intervals of pressure. The pressure values are then plugged into the sensor
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equation to produce the breakpoint voltages. The mechanics of entering the 
breakpoints is the same as in Example 1. 

 

If better conformity is required, more breakpoints may be used. However, 
breakpoints cannot be simply added to the table at random. Breakpoints 
must be entered in sequence starting at the minimum value and progress in 
ever-increasing values of the X variable. To obtain better conformity, a new 
function table must be started from the beginning. Therefore, to avoid 

needless trial and error, it is best to test the breakpoint table on paper to 
determine if the conformity error is acceptable. Another approach is to 
simply use all 23 breakpoints available for the best conformity. 

 

For this example, we may improve the conformity error by using nine 
breakpoints: 

 

 Input Output 
Minimum 0V +00000.00 
Maximum 1V +00200.00 
Breakpoint 00 .082V +00020.00 
Breakpoint 01 .168V +00040.00 
Breakpoint 02 .258V +00060.00 
Breakpoint 03 .352V +00080.00 
Breakpoint 04 .450V +00100.00 
Breakpoint 05 .552V +00120.00 
Breakpoint 06 .658V +00140.00 
Breakpoint 07 .768V +00160.00 
Breakpoint 08 .882V +00180.00 

Example N–3 

In many cases, the system transfer function may not be known. In these 
situations, a D2000 may be programmed empirically using test inputs 
derived by the system itself. 

 

A standpipe in a municipal water system has an irregular shape, as shown 
in Figure 14. It is desirable to obtain a direct reading of the volume of water 

contained in the standpipe. Because of the shape, a simple water height 
measurement would give grossly inaccurate readings of volume. Also, the 
actual relationship of volume to height is complex and unknown. 

 

The standpipe is 50 feet tall and has a known capacity of 30,000 gallons. A 
pressure sensor may be used at the base of the standpipe to obtain a 
reading of the water height. Since 1 foot of water produces a pressure of 
.4335 psi, the maximum pressure expected is 50 X .4335 = 21.7 psi. The 

pressure sensor we will use produces 0–5 volts for pressures of 0–25 psi. 
A D2131 5V input module will be used as the interface. 
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Figure 14. Scaling When Transfer Function is Unknown. 
 

Install the pressure sensor and the D2131 in place at the standpipe. Prepare 

the D2131 by erasing breakpoints and clearing zero as detailed in Example 
N–1. In this case we will setup the D2131 to display four digits which will 
result in an output resolution of 10 gallons. 

 

Start programming with the standpipe empty. Enter the minimum value: 
 

Command: $1MN+00000.00 

Response: * 
 

In this example, the maximum point may be programmed by filling the 

standpipe to obtain the maximum pressure output. However, this is 
awkward and unnecessary. Since the standpipe capacity is known to be 

30,000 gallons and the pressure can never reach 25 psi, we can simulate 
a maximum that we know can never be attained. To do this we may apply 
5V to the module input to simulate 25 psi. The 5V source does not have to 

be accurate. We can set the maximum value to 35,000 gallons, which is 
more than the standpipe can hold. 

 

Disconnect the pressure sensor and apply 5V to the module input: 
 

Command: $1MX+35000.00 

Response: * 
 

Re-connect the pressure sensor to the D2131. Starting with the standpipe 
empty, we may begin to program the breakpoints. We will set a breakpoint 

every 1500 gallons for a total of 20 breakpoints. 
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To set the first breakpoint, fill the standpipe with 1500 gallons of water. Since 
we will be using actual volumes of water to ‘calibrate’ the standpipe, the 

accuracy at which we can measure 1500 gallons will greatly influence the 
final performance of the system. 

 

With 1500 gallons in the standpipe used as the input excitation, program the 
first breakpoint: 

 

Command: $1BP00+01500.00 

Response: * 
 

Test: 
 

 
Command: $1 

Response: *+01500.00 
 

Fill the standpipe with an additional 1500 gallons to program the second 
breakpoint. The standpipe now holds 3000 gallons: 

 

Command: $1BP01+03000.00 
Response: * 

 

Command: $1 

Response: *+03000.00 
 

Repeat these steps until the standpipe is full. For each step, fill the standpipe 

with an additional 1500 gallons and program the breakpoint with the 
accumulated amount of water in the standpipe. When the breakpoint 

programming is complete, the D2131 will give a very accurate indication of 
the volume of water in the standpipe directly in units of gallons. 

 

In this example, the actual transfer function of the system is unknown. 

Instead, the function is plotted in the field by applying known inputs to the 
system. Note that the voltage produced by the pressure sensor does not 
have to be known to program the D2131. However it is wise to record the 
voltages produced by the sensor at each breakpoint. With this information, 
replacement D2131’s may be programmed with a voltage source to avoid 

repeating the tank filling exercise. 
 

Example N–4 
Program a D2141 10V input module to calculate the square root of the input 
signal from 0 to 10V. We’ll keep the units in terms of millivolts so that the 

square root of 10,000 millivolts (10V) is 100. To simplify this example, we 
will create a function with nine breakpoints at even 1V intervals. 



 
 
1. Construct the function table: 
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Analog input Data Output 

Minimum 0V +00000.00 
Maximum 10V +00100.00 
Breakpoint 00 1V +00031.62 
Breakpoint 01 2V +00044.72 
Breakpoint 02 3V +00054.77 
Breakpoint 03 4V +00063.25 
Breakpoint 04 5V +00070.71 
Breakpoint 05 6V +00077.46 
Breakpoint 06 7V +00083.67 
Breakpoint 07 8V +00089.44 
Breakpoint 08 9V +00094.87 

2. Erase breakpoints: 
 

Command: $1EB 
Response: * 

 

3. Clear zero: 
 

Command: $1CZ 
Response: * 

 

4. Display all digits: 
 

Command: $1SU310701C2 (typical) 
Response: * 

 

5. Program minimum by applying 0V (short) to input: 
 

Command: $1MN+00000.00 
Response: * 

 

6. Program maximum by applying exactly 10 volts to the input: 
 

Command: $1MX+00100.00 
Response: * 

 

7. Program breakpoints: 

Apply 1 volt to the input: 

Command: $1BP00+00031.62 
Response: * 



 
 
Apply 2 volts to the input: 

 

Command: $1BP01+00044.72 
Response: * 

 

Continue until all breakpoints are programmed. 
 

8. Verify the transfer function. 
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To get better conformity more breakpoints may be programmed, especially 
near the minimum end of the scale where the function curvature is greatest. 
There is no particular requirement to have breakpoints at regular intervals. 
The breakpoint intervals may be varied to achieve the best overall confor- 

mity. Small breakpoint intervals assure better conformity in areas where the 
function curvature is the greatest. 

 

Example N–5 
Breakpoints may be used to improve the linearity of a module in linear output 
applications. 

 

The D2141 module programmed in Example N–4 is to be programmed back 
to its original   10V input-output transfer function. 

 

1. Define function data: 
 

 Analog Input Data Output 

Minimum 
Maximum 

– 10V 
+10V 

–10000.00 
+10000.00 

 

 
2. Erase breakpoints. 

 

3. Clear zero 

(No Breakpoints) 

 

4. Setup the displayed output for five digits: 

Command: $1SU31070142 (typical) 
Response: *  

5. Program minimum by applying exactly –10V to the input: 
 

Command: $1MN–10000.00 
Response: * 

 

6. Program maximum by applying +10V to the input: 
 

Command: $1MX+10000.00 
Response: * 

 

7. There are no breakpoints to be programmed. 
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Analog Input Data Output 
 

– 5V –05010.00 

0V –00020.00 
+ 5V +04990.00 

 

During the verification process, we find that the module exhibits some errors. 
This is due to the .1% typical error inherent in the analog-to -digital converter. 
The nonlinearity may be corrected by using breakpoints. In this case, 

instead of using the breakpoints to create a nonlinear function, they will be 
used to ‘straighten’ the nonlinearity of the ADC. Only a few breakpoints are 
necessary to reduce the linearity error to .02 % or less. In this case we will 
use three breakpoints to linearize the module: 

 

Analog Input Data Output 
 

Minimum – 10V –10000.00 
Maximum + 10V +10000.00 
Breakpoint 00 – 5V –05000.00 
Breakpoint 01 0V +00000.00 
Breakpoint 02 +5V +05000.00 

 

Since the minimum and maximum data have already been programmed, 
only Step 7 is necessary to program in the breakpoints. 

 

After the breakpoints have been entered, verify the module transfer function: 

Analog Input Data Output 

– 7.5V –07502.00 
0V +00000.00 
+7.5V +07498.00 

 

This time the module output is in error by .02 % or less due to linearizing 
effect of the breakpoints. 

 

Example N–6 
 

 
 

 
 

Figure 15. Absolute Value Function. 
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A D2141 module may be programmed to create an absolute-value function 
as shown in Figure 15. However, this function violates the ‘rectangular area’ 
rule. To overcome this limitation, the function may be re-drawn as shown in 

Figure 16. This curve satisfies the ‘rectangular area’ rule. The function table 
for this curve looks like this: 

 

 Analog Input Data Output 

Minimum 
Maximum 
Breakpoint 00 

- 10V 
+10V 
-9.990V 

-00010.00 
+10000.00 
+09990.00 

Breakpoint 01 0V +00000.00 
 

 
 

 
Figure 16. Modified Absolute Value Function. 

 

The absolute-value function will be valid for inputs between - 9.990V and 
+10V. This technique may be used for other functions that violate the 
‘rectangular area’ rule. 


